Orienting the future of bio-macromolecular electron microscopy

Fei Sun

With 40 years of development, bio-macromolecule cryo-electron microscopy (cryo-EM) has completed its revolution in terms of resolution and currently plays a highly important role in structural biology study. According to different specimen states, cryo-EM involves three specific techniques: single-particle analysis (SPA), electron tomography and subtomogram averaging, and electron diffraction. None of these three techniques have realized their full potential for solving the structures of bio-macromolecules and therefore need additional development. In this review, the current existing bottlenecks of cryo-EM SPA are discussed with theoretical analysis, which include the air–water interface during specimen cryo-vitrification, bio-macromolecular conformational heterogeneity, focus gradient within thick specimens, and electron radiation damage. Furthermore, potential solutions of these bottlenecks worthy of further investigation are proposed and discussed.

Join our CryoSol Community newsletter
Get the latest insights into sample preparation for cryo-EM, publications, product developments, events and breakthrough science.